Journal of Organometallic Chemistry, 255 (1983) 179–191 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

η^2 -ACYLCARBONYLVANADIUM-VERBINDUNGEN

JAN SCHIEMANN und ERWIN WEISS *

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13 (B.R.D.)

(Eingegangen den 6.Mai 1983)

Summary

Substituted vanadium carbonyl compounds with η^2 -bonded acyl ligands (η^2 -RCO)V(CO)₃L₂ (\hat{L}_2 = ditertiary phosphines or arsines: dppe, dppp, dppm, diars, arphos, dpase) have been prepared by photochemical reaction of [V(CO)₄L₂] with various substituted benzoyl chlorides and cyclopropanylcarbonyl chloride.

Effects of aromatic substituents and L_2 upon the thermal stability of the η^2 -acylcarbonylvanadium compounds are discussed. IR ν (CO) force constants and ⁵¹V NMR signals are linearly correlated with Hammett's σ constants of the aromatic substituents.

The preparation of $V(CO)_2Cl(diars)_2$ is described.

Zusammenfassung

Substituierte Vanadiumcarbonyl-Verbindungen mit η^2 -gebundenen Acylliganden $(\eta^2 - \text{RCO})V(\text{CO})_3 \hat{L}_2$ (\hat{L}_2 = ditertiäre Phosphine oder Arsine: dppe, dppp, dppm, diars, arphos, dpase) wurden durch photochemische Reaktion von $[V(\text{CO})_4 \hat{L}_2]$ mit verschiedenen substituierten Benzoylchloriden und Cyclopropancarbonylchlorid erhalten.

Die Effekte von aromatischen Substituenten und \hat{L}_2 auf die thermische Stabilität der η^2 -Acylcarbonylvanadium-Verbindungen werden diskutiert. IR- ν (CO)-Kraftkonstanten und ⁵¹V-NMR-Resonanzen zeigen eine lineare Korrelation mit Hammett's σ -Konstanten der aromatischen Substituenten.

Die Darstellung von $V(CO)_2Cl(diars)_2$ wird beschrieben.

Einleitung

Bei Ubergangsmetall-Acyl-Komplexen sind prinzipiell die beiden Strukturtypen Ia und Ib bekannt. Metalle der VI. bis VIII. Nebengruppe bilden bevorzugt η^{1} - $(\sigma$ -)Acyl-Komplexe, z.B. $(\eta^{1}$ -CH₃CO)Mn(CO)₅. $R - C - M(CO)_{x}$ (Ia) $R - C - M(CO)_{x}$ $H - C - M(CO)_{x}$ $H - C - M(CO)_{x}$

 η^2 -(π -)Acyl-Verbindungen sind relativ selten und auch deshalb von Interesse, da sie als Zwischenstufe bei der CO-Insertionsreaktion an Metall-Alkyl- σ -Bindungen diskutiert werden [1]. Stabile Vertreter kennt man vor allem bei den Metallen der IV. Nebengruppe, z.B. (η^2 -CH₃CO)Ti(C₅H₅)₂Cl [2] oder (η^2 -CH₃CO)Zr(C₅H₅)₂CH₃ [3], jedoch gibt es auch Beispiele bei anderen Nebengruppen, wie (η^2 -RCO)Ru(CO)(PPh₃)₂Cl [4].

Vom Vanadiumcarbonyl abgeleitete Acyl-Komplexe sind noch kaum bekannt. Bei der Umsetzung von Triphenyl-cyclopropenyliumbromid mit $[V(CO)_4 \text{ arphos}]^-$ ent-deckten wir früher einen ersten Vertreter des η^2 -Typs [5] (Gl. 1).

Systematische Untersuchungen an Acylcarbonylvanadium-Verbindungen sind Gegenstand dieser Veröffentlichung.

Darstellung

Wir fanden, dass die photochemische Umsetzung von Carbonsäurechloriden mit Carbonylvanadaten einen allgemein anwendbaren Syntheseweg bietet (Gl. 2).

Bei Raumtemperatur entstehen stabile Verbindungen bei Verwendung substituierter Benzoylchloride sowie von Cyclopropancarbonsäurechlorid. Ausserdem werden chelatartig gebundene, ditertiäre Phosphine und Arsine zur Stabilisierung der Komplexe benötigt.

$$RCOCI + \left[V(CO)_{4}\widehat{L}_{2}\right]^{-} \xrightarrow{h\nu}_{-CI^{-},-CO} \xrightarrow{R}_{C=0} \xrightarrow{C=0}_{OC} \xrightarrow{L}_{C} \xrightarrow{L}_$$

Mit den in Tab. 1 aufgeführten Acylhalogeniden (a bis l) und den substituierten Carbonylvanadaten $[V(CO)_4 \hat{L}_2]^-$ (\hat{L}_2 vgl. Tab. 1, 1 bis 6) wurden insgesamt 20 neue Komplexe (1a-1k, 2a-2d, 4b-4d, 5b-5c) isoliert.

Alle erhaltenen Verbindungen sind vom η^2 -Typ. Auch bei Änderungen in der Versuchsdurchführung wie z.B. Umsetzungen ohne Bestrahlung konnten in keinem

TABELLE 1

Che	latliganden \hat{L}_2	Acylhalogenide ROCI
(1)	1,2-Bis(diphenylphosphino)-	R =
	ethan = dppe	$a C_3H_5$
(2)	1,3-Bis(diphenylphosphino)-	b $4 - (CH_3)_2 NC_6 H_4$
	propan = dppp	$c 4-CH_3OC_6H_4$
(3)	Bis(diphenylphosphino)-	$d 2-CH_3OC_6H_4$
	methan = dppm	e 3-CH ₃ OC ₆ H ₄
(4)	o-Phenylen-bis(dimethyl-	$f C_6 H_5$
	arsin) = diars	g 4-ClC ₆ H ₄
(5)	1-Diphenylphosphino-2-	h $4-FC_6H_4$
	diphenylarsinoethan	i 3-CH ₃ C ₆ H ₄
	= arphos	$j = 2,4,6-(CH_3)_3C_6H_2$
(6)	1,2-Bis(diphenylarsino)-	k $3-(CH_3)_2NC_6H_4$
	ethan = dpase	$I 4-NO_2C_6H_4$

Fall η^1 -Acyl-Komplexe nachgewiesen werden.

Die η^2 -Struktur wurde röntgenographisch anhand der Verbindungen 1f und 4b belegt [6]. In beiden Fällen liegen Benzolring und Vanadium-Acyl-System in einer Ebene. Damit ist eine optimale Delokalisierung des π -Elektronensystems gegeben. Wir führen hierauf die besondere Stabilität der η^2 -Acylkomplexe mit aromatischen Liganden zurück. Versuche mit dem aliphatischen Acylchlorid CH₃COCl ergaben nur Zersetzungsprodukte ($\hat{L}_2 = 1, 4, Tab. 1$). Für die Cyclopropylverbindung (η^2 -C₃Ph₃H₂CO)V(CO)₃arphos [4] wurde röntgenographisch eine etwa senkrechte (71.1°) Anordnung des Dreirings zur VCO-Gruppe festgestellt. Zur Erklärung kann man die Wechselwirkung des unbesetzten Acyl- π -Orbitals mit einem geeigneten Walsh-Orbital (e') entlang der Ebene des Dreirings [7] heranziehen.

Ein besonderes Ziel unserer Arbeiten war die Untersuchung von Substituenteneffekten auf die Stabilität der η^2 -Komplexe. Hierzu wurden verschiedene substituierte

Fig. 1. (a) Struktur von 1f (ohne H-Atome). (b) Struktur von 4b (ohne H-Atome).

Benzoylgruppen (b–l, Tab. 1) untersucht nämlich mit R =

Andererseits haben auch die Chelatliganden \hat{L}_2 einen deutlichen Einfluss, der sich besonders durch ihre Basizität und die Grösse der gebildeten Chelat-Ringe äussert. Günstig wirkt sich die Bildung spannungsfreier Fünfringe (dppe, diars, arphos) in Zusammenhang mit hoher Basizität des Liganden aus. Daher sind Phosphine besser als Arsine geeignet.

Hieraus ergibt sich, dass mit dppe alle oben aufgeführten Benzoylderivate under Einschluss von Cyclopropyl stabile Komplex bilden. Mit dem Sechsring-Chelatliganden dppp wurden noch vier und mit den Arsinen diars bzw. arphos nur drei bzw. zwei Komplexe erhalten. Hierbei werden die elektronenreichen Benzoylderivate bevorzugt (4-Me₂N, 4-MeO, 2-MeO). Wie später noch aufgeführt, lässt sich der Einfluss der aromatischen Substituenten auf die Komplexstabilität auch IR- und NMR-spektroskopisch nachweisen.

Bei keiner der von uns untersuchten Reaktionen gelang die Isolierung von η^2 -Acylvanadium-Verbindung ohne stabilierende Chelat-Liganden. Auf die Existenz von $(\eta^2$ -Acyl)V(CO)₅-Komplexen bei tiefen Temperaturen lassen jedoch folgende Beobachtungen schliessen:

Die photochemische Umsetzung von $V(CO)_6^-$ mit PhCOCl bei -78° C verläuft unter rascher Verfärbung von gelb nach rotviolett (Gl. 3). Bei anschliessender Zugabe von dppe und weiterer Bestrahlung lässt sich das thermostabile violette $(\eta^2$ -PhCO)V(CO)₃dppe isolieren (Gl. 4).

$$\left[v(cO)_{6}\right]^{-} + RCOCI \qquad \frac{h\nu}{-CO_{1} - CI_{1}} \qquad R C - V(CO)_{5} \qquad (3)$$

$$\begin{array}{c} R \\ C - V(CO)_5 + dppe \end{array} \xrightarrow{h\nu} \\ -2 CO \end{array} \begin{array}{c} R \\ -2 CO \end{array} \begin{array}{c} -V(CO)_3 dppe \end{array}$$
(4)

Wie schon erwähnt, verlaufen Umsetzungen mit aliphatischen oder olefinischen Säurechloriden stets unter Zersetzung. Ausgehend von $[V(CO)_4dppe]^-$ entsteht u.a. das bereits in der Literatur [8] beschriebene paramagnetische $V(CO)_4dppe$. Dementsprechend beobachtet man bei der Reaktion (Gl. 5) von $[V(CO)_4diars]^-$ mit Acylhalogeniden bei elektronenarmen R-Gruppen (e, f, Tab. 1) das bisher in der Literatur noch nicht beschriebene $V(CO)_4$ diars.

$$3 \left[V(CO)_4 \text{ diars} \right]^- + C_6 H_5 COC_1 \longrightarrow V(CO)_4 \text{ diars} + V(CO)_2 CI(\text{ diars})_2$$
(5)

$$\begin{array}{c} 0 & 0 \\ C & C \\ As & As \\ Cl \\ Cl \\ As \\ As \end{array} = diars$$

Ausserdem entsteht bei der Reaktion eine chlorhaltige Carbonylverbindung der Zusammensetzung V(CO)₂Cl(diars)₂, deren Struktur spektroskopisch aufgeklärt wurde. Sie ist das erste bekannte Vanadiumcarbonylchlorid. Bisher sind nur die thermolabilen Iodide V(CO)₄L₂I ($L_2 = dppe$, diars) beschrieben worden [9]. Auf Grund IR- und NMR-spektroskopischer Daten wird die folgende Struktur vorgeschlagen.

IR-Spektren

Tabelle 2 enthält die IR-Absorptionen im CO-Bereich (1800–2100 cm⁻¹). Die Komplexe haben nach den Ergebnissen der Röntgenstrukturanalyse C_s -Symmetrie mit facialer Position der CO-Gruppen. Man beobachtet im Bereich endständiger CO-Gruppen 3 Banden (Rassen 2A' + A''), von denen jedoch meistens zwei zu einer breiten Bande verschmelzen.

Deutlich erkennbar ist der Einfluss sowohl der P(As)-Donorliganden als auch der Acylsubstituenten auf die Lage der CO-Absorptionsbanden. Substituenten mit grossem (+M)-Effekt in o- oder p-Stellung zur Acyl-Gruppe, wie Me₂N- oder MeObewirken eine langwellige Verschiebung der CO-Frequenz. In gleicher Weise wirkt ein Ansteigen der Donorstärke der Liganden, da sie gleichfalls die Ladungsdichte am Zentralatom erhöht. Man findet folgende Reihenfolge der Donorstärke:

dppe \simeq diars > dppp > arphos

Genauer als ein direkter Vergleich der Wellenzahlen ist ein Vergleich der Kraftkonstanten, die sich in der vereinfachten Form nach der Cotton-Kraihanzel-Methode berechnen lassen. In einer weiteren Vereinfachung erhält man für C_{3v} -Symmetrie:

$$\Lambda(A_1) = k + 2k_i \text{ und } \Lambda(E) = k - K_i (\Lambda = \lambda/\mu_{CO})$$

Die Ergebnisse für die Streckkraftkonstante k und für die Wechselwirkungskraftkonstante k_i sind ebenfalls in Tab. 2 aufgeführt.

Eine Erhöhung der Elektronendichte am Zentralatom löst eine verstärkte Rückbindung in antibindende π^* -Orbitale der CO-Gruppen aus. Die C-O-Bindung wird dabei geschwächt, was sich in einer Verkleinerung der Kraftkonstanten käussert.

Da die σ -Werte der Hammett-Beziehung [11] für *m*- und *p*-Phenylsubstituenten

Verbindung	Phase	Wellenzahl (cm ⁻¹)		Kraftko	onst. (N m ⁻¹)	Hammettkonst.	
		CO-Bereich	RCO	k,	k	a	
(C ₃ H ₅ CO)V(CO) ₃ dppe	KBr	1923s 1819ss	1541m				
	CH_2Cl_2	1932s 1825ss		54	1399		
(C ₃ H ₂ Ph ₃ CO)V(CO) ₃ dppe	KBr	1927s 1838s 1822s					
(C ₆ H ₅ CO)V(CO) ₃ dppe	KBr	1916s 1825sSch 1817s	1518m				
	CH ₂ Cl ₂	1934s 1830ss		53	1406	0.0	
(4-FC ₆ H ₄ CO)V(CO) ₃ dppe	KBr	1919m 1830mSch 1819s	1520m				
	CH_2CI_2	1935s 1851sSch 1831s		53	1407	-0.07	
(4-ClC ₆ H ₄ CO)V(CO) ₃ dppe	KBr	1917s 1818ss	1523m				
	CH ₂ Cl ₂	1935s 1830ss		53	1405	+0.11	
(4-CH ₃ C ₆ H ₄ CO)V(CO) ₃ dppe	KBr	1920s 1825sSch 1809s	1521m				
	CH,CI,	1932s 1826ss		54	1401	-0.31	
(2,4,6-(CH ₃) ₃ C ₆ H ₂ CO)V(CO) ₃ dppe	KBr	1925s 1827ss	1540m				
	CH_2CI_2	1925s 1833ss		47	1404		
(4-(CH ₃) ₂ NC ₆ H ₄ CO)V(CO) ₃ dppe	KBr	1911s 1829m 1801s	1505m				
	CH_2CI_2	1925s 1820ss		53	1391	- 1.70	
(3-(CH ₃) ₂ NC ₆ H ₄ CO)V(CO) ₃ dppe	KBr	1981s 1820ss	1530m				
	CH_2CI_2	1933s 1830ss		52	1405	-0.21	
(4-CH ₃ OC ₆ H ₄ CO)V(CO) ₃ dppe	KBr	1917s 1928s 1812s	1523m				
	CH_2CI_2	1930s 1826ss		53	1399	-0.78	
(3-CH ₃ OC ₆ H ₄ CO)V(CO) ₃ dppe	KBr	1915s 1820ss	1533m				
	$CH_{1}CI_{1}$	1935s 1833ss		52	1409	+ 0.12	

1

INFRAROT-WELLENZAHLEN UND KRAFTKONSTANTEN DER π^2 -ACYL-KOMPLEXE (m = mittel, s = stark, ss = sehr stark, Sch = Schulter)

TABELLE 2

184

C,H,CO)V(CO),dppp K	CH.CI.					
C ₁ H, CO)V(CO), dppp	~2~-2	1931s 1833ss		50	1407	
	KBr	1928s 1831s 1822s	1525m			
Ŭ	CH ₂ Cl ₂	1933s 1828s		53	1402	
(4(CH ₃) ₂ NC ₆ H ₄ CO)V(CO) ₃ dppp K	KBr	1918s 1845sSch 1820ss	1525m			
C	CH_2CI_2	1923s 1829ss		48	1399	- 1.70
(4-CH ₃ OC ₆ H ₄ CO)V(CO) ₃ dppp K	KBr	1922s 1825ss	1510m			
	CH2Cl2	1927s 1831ss		49	1403	- 0.78
(2-CH ₃ OC ₆ H ₄ CO)V(CO) ₃ dppp K	KBr	1919s 1832s 1815s	1530m			
C	CH2Cl2	1931s 1834ss		49	1408	
C ₃ H ₂ Ph ₃ CO)V(CO) ₃ arphos K	KBr	1929s 1840s 1822s				
T	THF	1936s 1856s 1829s				
(4-(CH ₃) ₂ NC ₆ H ₄ CO)V(CO) ₃ arphos K	KΒr	1915s 1817ss	1521m			
C	CH ₂ Cl ₂	1911s 1821ss		· 45	1384	- 1.70
(4-CH ₃ -OC ₆ H ₄ -CO)V(CO) ₃ arphos K	KBr	1921s 1833s 1809s	1521m			
C	CH2Cl2	1933s 1826ss		54	1401	- 0.78
(4-(CH ₃) ₂ NC ₆ H ₄ CO)V(CO) ₃ diars K	KBr	1919s 1830m 1811s	1530m			
C	CH2Cl2	1927s 1818ss ·		55	1390	- 1.70
(4-CH ₃ OC ₆ H ₄ CO)V(CO) ₃ diars K	KBr	1925s 1843m 1811s	1525m			
C	CH ₂ Cl ₂	1927s 1818ss		55	1390	- 0.78
(2-CH ₃ OC ₆ H ₄ CO)V(CO) ₃ diars K	KBr	1919s 1823ss	1540m			
C	CH2Cl2	1934s 1831ss		52	1406	

ebenfalls ein Mass für die π -Elektronendichte der an den Benzolkern gebundenen Reaktionszentren (Zentralatom) darstellen, bietet sich ein Vergleich der k- und σ -Werte an (vgl. Tab. 2). Hinreichend viele Beispiele liefern dabei die dppe-Komplexe. Man findet ein nahezu lineares Anwachsen der σ -Werte mit den Kraftkonstanten.

Die ν (CO)-Schwingung der η^2 -Acylgruppe zeigt sich durch eine verbreiterte Bande mittlerer Intensität, deren Lage ebenfalls in Tab. 2 angegeben ist. Ihre Zuordnung ist mitunter nicht eindeutig, da im Bereich von 1500 bis 1600 cm⁻¹ auch andere Banden mittlerer Intensität, z.B. die P-Arylschwingungen auftreten. Die Verbreiterung der Bande ist ein Hinweis auf η^2 -Koordination [4]. Da die Wellenzahlen mit grösseren Fehlern behaftet sind erscheint eine Diskussion des Einflusses des Acyl-Restes R auf die Lage der Acyl-Schwingung nicht sinnvoll. Bei η^1 -Acyl-Verbindungen liegt die ν (CO)-Schwingung i.a. um ca. 100–150 cm⁻¹ höher.

⁵¹V-NMR-Spektren

Anders als ¹H-NMR-Spektren sind bei den untersuchten Verbindungen die ⁵¹V-Spektren aussagekräftiger. Allerdings sind die Signale durch das Kernquadrupolmoment stark verbreitert.

In Tab. 3 sind die Ergebnisse zusammengestellt. Die 31 V-Resonanzen liegen bei -930 bis -1080 ppm, bezogen auf VOCl₃, und haben Halbwertsbreiten von 200 bis 600 Hz. Nur in vereinzelten Fällen sind angedeutete Multiplettstrukturen erkennbar, wie sie durch Kopplung mit den Phosphorliganden entstehen. Die V-P-Kopplung beträgt in diesen Fällen 170 bis 200 Hz, in Übereinstimmung mit anderen

TABELLE 3

⁵¹V-NMR-SIGNALLAGEN DER η^2 -ACYL-KOMPLEXE (d = Dublett t = Triplett s = Singulett)

Verbindung	Signallage	Kopplungskonstante	Halbwertsbreite
	δ (ppm)	J (Hz)	$\Delta \nu/2$ (Hz)
(C ₃ H ₅ CO)V(CO) ₃ dppe	- 1038	184 (t)	551
$(C_6H_5CO)V(CO)_3dppe$	- 1027	_ a	499
(4-FC ₆ H ₄ CO)V(CO) ₃ dppe	- 1019	_ <i>a</i>	540
(4-ClC ₆ H ₄ CO)V(CO) ₃ dppe	- 1009	_ a	599
(4-CH ₃ C ₆ H ₄ CO)V(CO) ₃ dppe	- 1037	_ <i>a</i>	708
$(2,4,6-(CH_3)_3C_6H_2CO)V(CO)_3dppe$	-1028	_ <i>a</i>	506
$(4-(CH_3)_2NC_6H_4CO)V(CO)_3dppe$	-1082	_ a	540
$(3-(CH_3)_2NC_6H_4CO)V(CO)_3dppe$	- 1037	_ <i>a</i>	749
(4-CH ₃ OC ₆ H ₄ CO)V(CO) ₃ dppe	- 1052	- ^a	542
$(3-CH_3OC_6H_4CO)V(CO)_3dppe$	- 1022	169 (t)	483
$(2-CH_3OC_6H_4CO)V(CO)_3dppe$	- 1031	- ^a	625
(C ₃ H ₅ CO)V(CO) ₃ dppp	-931	176 (t)	506
(4-(CH ₃) ₂ NC ₆ H ₄ CO)V(CO) ₃ dppp	- 978	_ <i>a</i>	541
(4-CH ₃ OC ₆ H ₄ CO)V(CO) ₃ dppp	- 950	_ a	416
(2-CH ₃ OC ₆ H ₄ CO)V(CO) ₃ dppp	- 938	200 (t)	520
(4-(CH ₃) ₂ NC ₆ H ₄ CO)V(CO) ₃ arphos	- 1042	_ a	500
(4-CH ₃ OC ₆ H ₄ CO)V(CO) ₃ arphos	- 1016	171 (d)	451
(4-(CH ₃) ₂ NC ₆ H ₄ CO)V(CO) ₃ diars	- 1064	S	166
(4-CH ₃ OC ₆ H ₄ CO)V(CO) ₃ diars	- 1032	S	229
(2-CH ₃ OC ₆ H ₄ CO)V(CO) ₃ diars	- 1026	S	208

" Feinauflösung ist nicht mehr zu erkennen, stattdessen beobachtet man ein verbreitertes Signal.

V-P-Verbindungen [12]. Die Signale liegen mit $\sigma - 1000$ bis -1100 ppm bei tieferem Feld als die der entsprechenden phosphin- und arsin-substituierten Carbonylvanadate $[V(CO)_4L_2]^-$ und der Hydridocarbonyl-Komplexe HV(CO)_4L_2 [12], vergleichbar mit den Cyclopentadienyl-Verbindungen C₅H₅V(CO)₂L₂. Sowohl bei den η^2 -Acyl-Komplexen als auch bei den C₅H₅V(CO)₄-Derivaten besitzt das Vanadium formal die Oxidationszahl +1 mit der Koordinationszahl 7.

Die chemische Verschiebung der η^2 -Acyl-Komplexe wird stark von den Substituenten R der Benzoyl-Liganden beeinflusst. Die Signallagen variieren bei den dppe-Komplexen um 90 ppm. Auch hier ergibt sich ein etwa linearer Zusammenhang zwischen der chemischen Verschiebung und den σ -Werten nach Hammett (vgl. Tab. 2). Die chemische Verschiebung nimmt mit zunehmender Elektronenkonzentration am Acylrest (negative σ -Werte) ab. Einen parallelen Gang zeigen die diars-, arphos- und dppp-Komplexe, die allerdings nur mit je zwei Beispielen vertreten sind. Die beobachtete Reihenfolge reflektiert wiederum die Donorstärke dieser Liganden dppe > diars > arphos > dppp.

Bisher wurden kaum V-NMR-Untersuchungen mit dieser Zielsetzung unternommen. Herberhold und Trampisch [13] untersuchten einige $C_5H_5V(NO)_2L$ -Komplexe mit verschiedenen *p*-substituierten Pyridinen L. Der Substituenteneinfluss ist hier gering und bewirkt eine Verschiebung der ⁵¹V-NMR-Resonanzen um maximal 12 ppm.

(Fortsetzung s. S. 190)

Carbonyl	vanadat (g (mmol))	Säurechlorid (ml (mmol))	Ausbeute (g (mmol) % d.Th.)
1.4 (2.4)	Na[V(CO)₄dppe]	0.18 (2.1) C ₃ H ₅ COCl	0.15 (0.25) 12
2.0 (2.9)	$[Et_4N][V(CO)_4dppe]$	$0.40 g(2.2) 4-(CH_3)_2 NC_6 H_4 COCl$	0.20 (0.29) 13
1.6 (2.3)	$[Et_4N][V(CO)_4dppe]$	0.26 (1.8) 4-CH ₃ OC ₆ H ₄ COCl	0.18 (0.27) 15
1.4 (2.4)	Na[V(CO)₄dppe]	0.29 (2.0) 2-CH ₃ OC ₆ H ₄ COCl	0.11 (0.16) 8
1.1 (1.8)	Na[V(CO)₄dppe]	0.22 (1.6) 3-CH ₃ OC ₆ H ₄ COCI	0.07 (0.11) 7
1.6 (2.3)	[Et ₄ N][V(CO) ₄ dppe]	0.25 (2.2) C ₆ H ₅ COCl	0.07 (0.11) 5
1.1 (1.8)	Na[V(CO) ₄ dppe]	0.20 (1.5) 4-ClC ₆ H ₄ COCl	0.06 (0.09) 6
0.9 (1.5)	Na[V(CO) ₄ dppe]	0.15 (1.2) 4-CH ₃ C ₆ H ₄ COCl	0.04 (0.06) 5
1.4 (2.4)	Na[V(CO) ₄ dppe]	0.34 (2.3) 2,4,6-(CH ₃) ₃ C ₆ H ₂ COCl	0.12 (0.18) 8
1.1 (1.8)	Na[V(CO)₄dppe]	0.14 (0.9) 3-(CH ₃) ₂ NC ₆ H ₄ COCl	nicht rein erhalten
1.1 (1.8)	Na[V(CO) ₄ dppe]	0.20 (1.5) $4-FC_6H_4COCI$	0.12 (0.18) 12
0.9 (1.3)	[Et ₄ N][V(CO) ₄ dppp]	0.10 (1.1) C_3H_5COCI	0.07 (0.11) 10
1.5 (2.1)	[Et ₄ N][V(CO) ₄ dppp]	$0.33 g(1.8) 4-(CH_3)_2 NC_6 H_4 COCI$	0.15 (0.22) 12
0.9 (1.3)	[Et ₄ N][V(CO) ₄ dppp]	0.15 (1.1) $4-CH_3OC_6H_4COCI$	0.09 (0.13) 12
2.1 (2.9)	[Et ₄ N][V(CO) ₄ dppp]	0.37 (2.6) 2-CH ₃ OC ₆ H ₄ COCl	0.14 (0.21) 8
1.1 (1.9)	[Et ₄ N][V(CO) ₄ diars]	$0.35 g(1.9) 4-(CH_3)_2NC_6COC1$	0.17 (0.29) 15
1.5 (2.5)	[Et ₄ N][V(CO) ₄ diars]	0.31 (2.2) 4-CH ₃ OC ₆ H ₄ COCl	0.30 (0.54) 25
0.7 (1.2)	[Et ₄ N][V(CO) ₄ diars]	0.13 (0.9) 2-CH ₃ OC ₆ H ₄ COCl	0.04 (0.07) 8
1.6 (2.2)	[Et ₄ N][V(CO) ₄ arphos]	0.29 (2.0) 4-CH ₃ OC ₆ H ₄ COCl	0.10 (0.14) 7
1.6 (2.2)	[Et ₄ N][V(CO) ₄ arphos]	0.37 g(2.0) 4-(CH ₃) ₂ NC ₆ H ₄ COCI	nicht rein erhalten

TABELLE 4

EINGESETZTE MENGEN UND AUSBEUTEN BEI DER SYNTHESE VON (RCO)V(CO)₃L₂

(RCO)V(CO) ₃ L ₂	Zersbereich	Summenformel	Molmasse (ber.)	Analysen (gef. (ber.) (X))	an a			1
	(°C)			c	Н	z	đ	>	l
$L_2 = dppe, R =$									ł
C,H,	134-138	C ₁₁ H ₂₀ O ₄ P ₂ V	602.50	63.84	5.10		9.43	8.10	
1		i i		(65.78)	(4.86)		(10.28)	(8.46)	
4-(CH ₃) ₂ NC ₆ H ₄	184-186	C ₂₈ H ₃₄ NO ₄ P ₂ V	681.61	64.51	5.02	2.05			
				(66.96)	(5.04)	(2.06)			
4-CH ₁ OC ₆ H ₄	7579	$C_{17}H_{31}O_{5}P_{2}V$	668.56	67.42	4.77		9.15	7.27	
•				(66.47)	(4.64)		(9.28)	(7.63)	
2-CH ₁ OC ₆ H ₄	125-130	C ₁₇ H ₁₁ O ₅ P ₅ V	668.56	65.28	4.79				
				(66.47)	(4.64)				
3-CH3OC,H2	125-130	$C_{37}H_{34}O_5P_2V$	668.56	61.09	4.99				
				(66.47)	(4.64)				
C,H,	8385	C ₃₆ H ₂₆ O ₄ P ₂ V	638.53	70.65	5.19		7.50	10.7	
•				(67.71)	(4.59)		(6.71)	(2.98)	
4-CIC,H ₄	119-122	C ₃₆ H ₂₈ O ₄ CIP ₂ V	672.50	64.28	4.79				
				(64.24)	(4.16)				
4-FC ₄ H ₄	85-90	C ₃₆ H ₃₈ O ₄ FP ₅ V	656.52	66.16	4.66		9.57	6.89	
- 2				(65.86)	(4.31)		(9.43)	(7.76)	
4-CH ₃ C ₆ H ₄	117-119	C ₃₇ H ₃₁ O₄P ₂ V	652.56	68.38	4.80				
				(68.10)	(4.99)				

ANALYSENDATEN DER KOMPLEXE (RCO)V(CO)₃ \hat{L}_2

TABELLE 5

2,4,6-(CH ₃) ₃ C ₆ H ₂	119–122	C ₃₉ H ₃₅ O ₄ P ₂ V	680.62	69.65 (68.82)	5.19 (5.19)		9.85 (9.10)	
$L_2 = dppp, R = C_3 H_s$	120-122	C ₃₄ H ₃₁ O ₄ P ₂ V	616.53	67.37 15, 737	4.06			
4-(CH ₃) ₂ NC ₆ H ₄	105108	C ₃₉ H ₃₆ NO4P ₂ V	695.64	(54.56 64.56 (67 33)	(5.23) (5.23)	1.78		
4-CH ₃ OC ₆ H ₄	85-92	C ₃₈ H ₃₃ O ₅ P ₂ V	682.59	(67.34 67.34 (66.86)	4.81 (4.88)	(1)		
2-CH ₃ OC ₆ H ₄	70–72	C ₃₈ H ₃₃ O ₅ P ₂ V	682.59	(66.86) (66.86)	5.54 (4.88)		8.09 (9.07)	6.07 (7.46)
$L_2 = diars, R = 4+(CH_3)_2NC_6H_4$	160-165	C22H2604A82V	569.27	48.31	4.77	2.96		
4-CH3OC ₆ H ₄	130-137	C ₂₁ H ₂₃ O ₅ As ₂ V	556.22	(40.41) 45.37 (45.24)	(4.01) 4.37 (4.10)	(07:40)		8.71
2-CH3OC6H4	127-132	C ₂₁ H ₂₃ O ₅ A ₅₂ V	556.22	(45.34) (45.34)	(4.10) 3.18 (4.18)			(9.16) 9.31 (9.16)
L ₂ = arphos, R = 4-CH,OC ₆ H ₄	124-126	C ₃₇ H ₃₁ O ₅ AsPV	712.51	62.38 (62.37)	4.90 (4.39)			

Experimenteller Teil

Darstellungsmethoden

Alle Operationen erfolgten unter strengem Sauerstoff- und Feuchtigkeitsausschluss. Die isolierten Verbindungen sind besonders in Lösung luft- und temperaturempfindlich.

Für die photochemischen Reaktionen stand eine kühlbare Spezialapparatur (Fa. Normag) mit einer UV-Hg-Hochdrucklampe (125 W) zur Verfügung. Das Reaktionsgefäss (Volumen ca. 200 ml) besitzt eine zentrale Öffnung für den Lampen-Kühleinsatz und zwei seitliche Anschlüsse für N_2 -Zufuhr und einen Tropftrichter.

Aus $[Na(diglyme)_2][V(CO)_6]$ (Strem Chem.Inc.) wird durch Umfällen $[Et_4N][V(CO)_6]$ erhalten. Hieraus gewinnt man die substituierten Carbonylvanadate $[V(CO)_4L_2]$ durch photochemische Umsetzung mit den Liganden \hat{L}_2 [14–16].

Darstellung von $(\eta^2 \cdot RCO)V(CO)_3 \hat{L}_2$

Die Umsetzung von $[(V(CO)_4L_2]^-$ mit Säurechlorid erfolgt mit den in Tab. 4 erhaltenen Mengen. Hierzu löst man 1–3 mmol der phosphinsubstituierten Carbonylvanadate $[V(CO)_4L_2]^-$ in der Bestrahlungsapparatur bei ca. – 78°C in 180 ml THF. Beim Zutropfen des Säurechlorids (etwa 10%iger Unterschuss, gelöst in 20 ml THF) innerhalb 15 min unter UV-Bestrahlung verfärbt sich die Reaktionslösung von hellrot bzw. orange nach violett bis violettrot. Nach beendigtem Zutropfen wird noch ca. 15 min bestrahlt und dann die Lösung von Zersetzungsprodukten abfiltriert. Nach Abziehen des Lösungsmittels unter vermindertem Druck bei 0°C nimmt man das Produkt in ca. 10 ml Toluol auf und chromatographiert an einer Kieselgel-Säule (\emptyset 3 cm, l 15 cm) mit Toluol. Die violettrote Fraktion enthält das Produkt, welches nach Abziehen des Lösungsmittels aus Toluol/Hexan in der Kälte umkristallisiert wird. Im festen Zustand sind die Verbindungen bei Kühlung längere Zeit haltbar; gelöst sind sie bei Raumtemperatur auch unter N₂-Schutz zersetzlich. Sie lösen sich kaum in Hexan, mässig in Ether und Toluol, gut in THF, CH₂Cl₂ und nicht in Wasser. Weitere Eigenschaften und analytische Daten sind in Tab. 5 aufgeführt.

Umsetzung von $[Et_{4}N]/V(CO)_{4}$ diars] mit Benzoylchlorid

Zu einer auf -78° C gekühlten Lösung von 2.55 g (4.4 mmol) [Et₄N][V(CO)₄diars] in 180 ml THF tropft man unter UV-Bestrahlung innerhalb 25 min 0.46 ml (4.0 mmol) Benzoylchlorid in 20 ml THF. Die zunächst orangerote Lösung verfärbt sich dabei dunkelrot. Nach Filtration der Lösung und Einengen bei 0°C extrahiert man das verbliebene Öl mit 50 ml Toluol, engt die filtrierte Lösung auf 20 ml ein, worauf V(CO)₂Cl(diars)₂ in roten Plättchen auskristallisiert (0.05 g, 0.07 mmol = 3.2% d.Th.). Nach weiterem Einengen der Mutterlauge auf 10 ml und Zugabe von 15 ml Hexan kristallisiert bei -30° C orangerotes V(CO)₄diars (0.12 g, 0.26 mmol = 6.5% d.Th.).

 $V(CO)_2Cl(diars)_2$. Zers. 133–137°C. Analysen: gef.: C, 37.2; H, 4.5; As, 41.2; Cl, 4.2; V, 7.3. $C_{22}H_{32}O_2As_4ClV$ (714.6) ber.: C, 36.95; H, 4.48; As, 41.98; Cl, 4.97; V, 7.14%.

Rote Kristalle, unlöslich in Hexan und Wasser, mässig löslich in Toluol und Ether, gut löslich in Aceton, CH_2Cl_2 , THF und CH_3CN . $\nu(CO)$ 1820, 1760 cm⁻¹ (KBr); 1830, 1763 cm⁻¹ (CH₂Cl₂). ¹H-NMR: 7.6 ppm (m, 4H), 1.78 ppm (s, 12H), 1.60 ppm (s, 12H).

 $V(CO)_4$ diars. Zers. 65-68°C. Analysen: gef.: C, 35.4; H, 4.0. $C_{14}H_{16}O_4As_2V$ (449.1) ber.: C, 37.44; H, 3.60%.

Orangerote Kristalle, unlöslich in Hexan, löslich in Toluol und Ether, sehr gut löslich in Aceton, CH_2Cl_2 , THF und CH_3CN . $\nu(CO)$: 1982m, 1892m, 1865s, sh, 1855s, 1823m(KBr); 1990m, 1875vs (CH_2Cl_2).

Dank

Der Deutschen Forschungsgemeinschaft danken wir für finanzielle Unterstützung dieser Arbeit. Wir danken ferner dem Fonds der Chemischen Industrie für Sachbeihilfen und Frau H. Effinger sowie Frl. U. Gralla für experimentelle Unterstützung.

Literatur

- 1 F. Calderazzo, Angew. Chem., 89(1977)305.
- 2 G. Facchinetti, C. Floriani und H. Stoeckli-Evans, J. Chem. Soc., Dalton Trans., (1977)2297.
- 3 G. Facchinetti, C. Floriani, F. Marchetti und S. Merlino, J. Chem. Soc., Chem. Commun., (1976)522.
- 4 R.R. Hitch, S.K. Gondal und C.T. Sears, J. Chem. Soc., Chem. Commun., (1971)777.
- 5 U. Franke und E. Weiss, J. Organomet. Chem. 165(1979)329.
- 6 J. Schiemann und E. Weiss, eingereicht.
- 7 M. Klessinger, Elektronenstruktur organischer Moleküle, 1982, Verlag Chemie, Weinheim (BRD).
- 8 H. Behrens und K. Lutz, Z. Anorg. Allg. Chem., 356(1968)225.
- 9 J.E. Ellis und P.A. Faltynek, J. Organomet. Chem., 93(1975)205.
- 10 C.S. Kraihanzel und F.A. Cotton, J. Am. Chem. Soc., 84(1962)4432.
- 11 Y. Okamoto und H.C. Brown, J. Am. Chem. Soc., 80(1958)4979.
- 12 D. Rehder, Bull. Magn. Res., 4(1982)1.
- 13 M. Herberhold und H. Trampisch, Z. Naturforsch. B, 37(1982)614.
- 14 D. Rehder, L. Dahlenburg und I. Müller, J. Organomet. Chem., 122(1976)53.
- 15 A. Davison und J.E. Ellis, J. Organomet: Chem., 36(1972)131,
- 16 W.R.W. Rose, D. Rehder, H. Lüders und K.H. Theopold, J. Organomet. Chem., 157(1978)311.